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Abstract

We present a novel global stereo model designed for view
interpolation. Unlike existing stereo models which only out-
put a disparity map, our model is able to output a 3D tri-
angular mesh, which can be directly used for view interpo-
lation. To realize this feature, we partition the input stereo
images into 2D triangles with shared vertices. Lifting the
2D triangulation to 3D naturally generates a correspond-
ing mesh. A technical difficulty is to properly split vertices
to multiple copies when they appear at depth discontinuous
boundaries. To deal with this problem, we formulate our ob-
jective as a two-layer MRF, with the upper layer modeling
the splitting properties of the vertices and the lower layer
optimizing a region-based stereo matching. Experiments on
the Middlebury and the Herodion datasets demonstrate that
our model is able to synthesize visually coherent new view
angles with high PSNR, as well as outputting high quality
disparity maps which rank at the first place on the new chal-
lenging high resolution Middlebury 3.0 benchmark.

1. Introduction

Stereo model is a key component to generate 3D proxies
(either point-clouds [18] or triangular meshes [15]) for view
interpolation. Mesh-based approaches are becoming more
and more popular [15][16][6][20] because they are faster
in rendering speed, have more compact model size and pro-
duce better visual effects compared to the point-cloud-based
approaches. A typical pipeline to obtain triangular meshes
consists of two steps: 1) generate disparity/depth maps by
a stereo model, and 2) extract meshes from the estimated
disparity maps by heuristic methods, such as triangulating
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Figure 1. A 2D triangulation and a 3D mesh of the Bowling2 test
case from Middlebury 2.0 [14] generated by our approach. Blue
dots in the left images denotes 2D vertices with splitting probabil-
ity greater than 0.5.

the polyline-simplified disparity regions [16].
However, due to the separation of the two steps, the ob-

tained meshes may not be optimal for the final goal of view
interpolation. The stereo matching community mainly fo-
cuses on producing disparity maps with low pixel-wise er-
ror rates [5][9][25][23][17][12][24]. However, pixel-wise
accurate disparity maps are not necessary nor sufficient to
generate high quality meshes for the task of view interpo-
lation. Moreover, the internal structures of a mesh, e.g.,
alignment of adjacent triangles, which would be helpful for
rendering, are not exploited.

This observation motivates us to develop an integrated
approach for view interpolation, which should have two de-
sired properties: 1) the model can naturally produce a mesh
structure, such that view interpolation reduces to a simple
rendering problem; 2) the model can output a correspond-
ing disparity map with high quality to make the rendering
results look as natural as possible. In this paper, we propose
a stereo model that works on a 2D triangulation of an input
view with these two goals in mind.

In the proposed model, an input image is first partitioned
into 2D triangular regions according to edge distribution
and local visual consistency, as shown in Fig. 1, with com-
mon vertices shared by adjacent triangles. To generate the
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corresponding 3D triangular mesh, a key step is to prop-
erly compute the disparities of the triangle vertices. How-
ever, due to the presence of discontinuities in depth, ver-
tices on depth boundaries should be split to different trian-
gle planes. To model such splitting properties, we assign
a latent splitting variable to each vertex. Given the split
or non-split properties of the vertices, a region-based stereo
approach can be adopted to optimize a piecewise planar dis-
parity map, guided by whether adjacent triangles should be
aligned or split. Once the disparity map is computed, the
split or non-split properties can be accordingly updated. By
iteratively running the two steps, we obtain optimized dis-
parities of the triangle vertices. The overall energy of the
proposed model can be viewed as a two-layer Markov Ran-
dom Field (MRF). The upper layer focuses on the goal of
better view rendering results, and the lower layer focuses on
better stereo quality.

1.1. Contribution

The contributions of this paper are two-fold

1. We proposed a stereo model for view interpolation
whose output can be easily converted to a triangular
mesh in 3D. The outputted mesh is able to synthe-
size novel views with both visual coherency and high
PSNR values.

2. In terms of stereo quality, The proposed model ranks at
the first place on the new challenging high-resolution
Middlebury 3.0 benchmark.

2. Related Work

For a comprehensive survey on two-frame stereo match-
ing, we refer readers to the survey by Scharstein and
Szeliski [14]. And for an overview of point-based view in-
terpolation approach, we refer readers to [19]. In this sec-
tion, we mainly discuss works on stereo models for image-
based rendering that make use of mesh structures.

To interpolate a new view, most of state-of-the-art view
interpolation systems use multiple triangle meshes as ren-
dering proxies [15]. A multi-pass rendering with proper
blending parameters can synthesize new views in real-time
[7]. Compared with the point-based rendering approaches
[18], mesh-based approaches have lots of advantages, e.g.,
more compact model and without holes. Thus, mesh-based
approaches have been a standard tool for general purpose
view interpolation. Most of recent works focus on generat-
ing better meshes for existing views.

A typical pipeline to generate a triangular mesh consists
of two consecutive steps: 1) run stereo matching to get a dis-
parity map, and 2) generate a triangular mesh from the esti-
mated map. The system presented by Zitnick et al. [26] is

one of the seminal works. In the paper, the authors first gen-
erate a pixel-wise depth map using a local segment-based
stereo method, then convert it to a mesh by a vertex shader
program. In [16], Sinha et al. first extract a set of robust
plane candidates based on the sparse point cloud and the 3D
line segments of the scene. Then a piecewise planar depth
map is recovered by solving a multi-labeling MRF where
each label corresponds to a candidate plane. For rendering,
the 3D meshes are obtained by triangulating the polygon-
simplified version of each piecewise planar region. Sep-
aration of the depth map estimation and mesh generation
process is a major problem of this pipeline. The obtained
triangle meshes are not optimal for rendering.

For scenes with lots of planar structures, e.g., buildings,
special rendering approaches have been developed. Plane
fitting is a basic idea to generate rendering proxies. Xiao
and Furukawa [20] proposed a reconstruction and visual-
ization system for large indoor scenes such as museums.
Provided with the laser-scanned 3D points, the authors re-
cover a 3D Constructive Solid Geometry (CSG) model of
the scene using cuboids primitives. For rendering, the union
of the CSG models is converted to a mesh model using
CGAL [1], and ground-level images are texture-mapped to
the 3D model for navigation. Cabral et al. [6] proposed
a piecewise model for floorplan reconstruction to visualize
indoor scenes. The 3D mesh is obtained by triangulating
the floorplan to generate a floor mesh, which is extruded to
the ceiling to generate quad facades. Rendering is done by
texture mapping those triangles and quads.

Despite of the pleasant visual effects, missing of nec-
essary details is a common problem of these plane fitting-
based systems. For example, we can easily see artifacts on
regions of the furniture during the navigation in the video
provided by [6]. Incorporating a region-based stereo match-
ing when generating the rendering proxies, as proposed in
this paper, is a solution for the problem. Our proposed
model dose not have specific assumption on scene struc-
tures, can cope with non-planar shapes, therefore can serve
as a powerful plugin for [16][6] to visualize finer structures.

To the best of our knowledge, the most related work of
ours is Fickel et al. [8]. Starting from a 2D image trian-
gulation, the method computes a fronto-parallel surface for
each triangle, and then solve a linear system to adjust the
disparity value on each private vertex. In mesh generation,
a hand chosen threshold need to be set to classify each ver-
tex as foreground or background. Due to the heavy fronto-
parallel bias, the disparity maps’s quality is low. In contrast,
our model produces high quality disparity maps as well as
good rendering results, and does not require a hand chosen
threshold in mesh generation.

Another closely related work of us is Yamaguchi et al.
[23][22]. In these papers, the authors optimize a slanted
plane model over SLIC segments [2], and simultaneously



Figure 2. An overview of the proposed integrated approach. 1) The input stereo pair are triangulated in image domain. 2) Piecewise planar
disparity maps and the corresponding splitting probabilities of the vertices are estimated by our model. 3) The 3D meshes are lifted from
the 2D triangulations according to the disparity maps and splitting properties outputted by the previous step. 4) The generated meshes are
texture mapped [7], an interpolated view is synthesized by blending the projections from the two meshes to the new view angle.

reason about the states of occlusion, hinge or coplanarity
over adjacent segment pairs. Although both using a slanted
plane model over super-pixels, there are noticeable differ-
ences between Yamaguchi et al. and ours. 1) To exploit the
latent structures of a scene, instead of modeling the relation-
ships over segment pairs, we model the splitting probabili-
ties over shared triangle vertices, which is a natural choice
for the task of view interpolation. 2) [23][22] performs a
slanted plane smoothing on a pre-estimated disparity map,
whose quality may limit the performance of the model. Our
model avoids such limitation by computing matching cost
based directly on photo consistency. 3) The above differ-
ences lead to completely different optimization approaches.
We proposed an optimization scheme that makes use of
PatchMatch [5] to achieve efficient inference in the slanted
plane space.

3. Formulation
3.1. Overview

Fig. 2 illustrates the workflow of the proposed inte-
grated approach. The basic idea is to first partition an input
stereo pair to 2D triangles with shared vertices, then com-
pute proper disparity/depth values for the vertices. With the
known depth at each vertex, a 2D triangulation can be di-
rectly lifted to a 3D mesh, with shared vertices explicitly
imposing the well-aligning properties on adjacent triangles.
However, due to presence of depth discontinuities, vertices
on depth boundaries should be split, that is, they should pos-
sess multiple depth values.

To tackle this difficulty, we model each triangle by a
slanted plane, and assign a splitting probability to each ver-
tex as a latent variable. Joint inference of the planes and
the latent variables takes edge intensity, region connectivity
and photo-consistency into consideration. The problem is
formulated as a two layer continuous MRF with the follow-
ing properties

1. Given the splitting variables, the lower layer is an MRF
w.r.t. the set of plane equations, which is a region-
based stereo model imposing photo consistency and
normal smoothness.

2. The upper layer is an MRF w.r.t. the set of splitting
probabilities, which provides a prior on the splitting
structure of the triangulation given an image.

3. The two layers are glued together by an alignment en-
ergy which encourages alignment among neighboring
triangles on continuous surface, but allows splitting at
depth discontinuous boundaries.

3.2. The Lower Layer on Stereo

Notations. We parameterize the plane equation using
the normal-depth representation: each triangle i is assigned
a normal ni = (nx,i, ny,i, 1)>, and a disparity di of its
barycenter (x̄i, ȳi)

>. We use N,D to denote the set of nor-
mals and disparities collected from all triangles. Note that
we fix the nz of a normal to 1, since this parameterization
does not harm the plane’s modeling capability, and enables
a closed-form update in section 4.2.1. More details can be
found in supplementary materials.

Matching Cost. The overall matching cost is defined as
the sum of each individual slanted plane cost

EMatchingCost(N,D) =
∑
i

ρTRIANGLE(ni, di) (1)

=
∑
i

∑
p∈Trii

ρ

([
px
py

]
,

[
px −Di(p)

py

])
where Di(p) = aipx + bipy + ci is the disparity value at
pixel p induced by triangle i’s plane equation. The plane
coefficients ai, bi, ci are converted from their normal-depth
representation by a = −nx

nz
, b = −ny

nz
, c =

nxx̄i+ny ȳi+nzdi
nz

and ρ(p, q) is the pixel-wise matching cost defined by

ρ(p, q) = hamdist(Census 1(p)− Census 2(q))

+ ω ·min(||∇I1(p)−∇I2(q)||, τgrad)
(2)

where Census 1(p) represents a 5×5 census feature around
p on image I1 and hamdist(·, ·) is the hamming distance.
∇· denotes the gradient operator. The values of τgrad, ω
are determined by maximizing the survival rate in the left-
right consistency check of the winner-takes-all results on
the training images.



Normal Smoothness. We impose a smoothness con-
straint on the normal pairs of neighboring triangles with
similar appearances

ENormalSmooth(N) =
∑
i,j∈N

wij(ni − nj)
>(ni − nj) (3)

where wij = exp(−||ci − cj ||1/γ1) measures the similar-
ity of the triangles’ mean colors ci, cj , and γ1 controls the
influence of the color difference to the weight.

3.3. The Upper Layer on Splitting

Notations. Each shared vertex s is assigned a splitting
probability αs. Splitting probabilities of all 2D vertices are
denoted by α.

Prior on the Splitting Probabilities. We model the
prior by a data term and a smoothness term

ESplitPenalty(α) =
∑
s

αs · τs (4)

ESplitSmooth(α) =
∑
s,t∈N

wst(αs − αt)2 (5)

where the penalty τs is set adaptively based on the evidence
of whether s is located at a strong edge. s, t ∈ N means
s and t are neighboring vertices, and wst is a weight deter-
mined by the distance of the visual complexity levels of lo-
cation s and t. The data term encourages splitting if s is on
a strong edge. The smoothness term imposes smoothness if
s and t are of similar local visual complexities. Specifically

τs = exp
(
−||∇I3(xs, ys)||1/γ2

)
(6)

wst = exp(−||k(xs, ys)− k(xt, yt)||/γ3) (7)

where {I l, l = 1, 3, 5, 7, 9} is a sequence of progressively
gaussian-blurred images using kernel size l × l. k(x, y) is
largest scale that pixel (x, y)’s color stay roughly constant

k(x, y) = argmax
j
{||I l(x, y)− I(x, y)||2 < 10, ∀l ≤ j}

(8)
We discuss how γ2, γ3 are set in the experiment section.

3.4. Gluing the Two Layers

So far the two layers have defined two global models for
the two sets of variables (i.e., the plane equations and the
splitting probabilities), we further combine them together
through an alignment term. The new term demands a strong
alignment on shared vertices located at continuous surfaces,
while allows a shared vertex to posses multiple depth values
if its splitting probability is high

EAlignment(N,D,α) =
∑
s

(1− αs)

·
∑
i,j∈Gs

1

2
wij ·

(
Di(xs, ys)−Dj(xs, ys)

)2 (9)

Algorithm 1 Optimize EALL

RandomInit(N,D); α = 1;
repeat

M-step: fix α, minimize ELOWER with respect to N,D
by Algorithm 2.
E-step: fix N,D, minimize EUPPER with respect to α
by solving (13) using Cholesky decomposition.

until converged

where Gs denotes the set of triangles sharing the vertex s,
and recall that Di(xs, ys) defined in (1) denotes disparity
of s evaluated by triangle i’s plane equation. Therefore, at
regions with continuous depth (αs close to zero), the align-
ment term will encourage triangles to have their disparities
agreed on s. At depth discontinuous boundaries (αs close
to 1), it allows the triangles in Gs to stick to their own dis-
parities with little penalty.

Note that ENormalSmooth and EAlignment together impose a
complete second-order smoothness on the disparity field.
That is, the energy terms do not penalize slanted disparity
planes.

3.5. Overall Energy

Combining the two layers and the alignment energy, we
obtain the overall objective function

EALL(N,D,α) = EMatchingCost + λNS · ENormalSmooth (10)
+ λAL · EAlignment + λSP · ESplitPenalty + λSS · ESplitSmooth

where λ× are scaling factors. For the ease of presentation
in the next section, we introduce the following notations

EUPPER = λSPESplitPenalty + λSSESplitSmooth + λALEAlignment
(11)

ELOWER = EMatchingCost + λNSENormalSmooth + λALEAlignment
(12)

4. Optimization
The overall energy EALL in (10) poses a challenging op-

timization problem since the variables are all continuous
and tightly coupled. We propose an EM-like approach to
optimize the energy, in which the splitting probabilities α
are treated as latent variables, and the plane equations N,D
are treated as model parameters. Optimization proceeds
by iteratively updating α (E-step), which can be solved in
closed-form, and N,D (M-step), which is optimized by
a region-based stereo model through quadratic relaxation.
The method is summarized in Algorithm 1.

4.1. E-Step: Optimize EUPPER

By fixing N,D, Optimizing EALL is equivalent to opti-
mize EUPPER, which is listed as follow with some algebraic



rearrangement

min
α

∑
s

(
τs−cAL(s)

)
αs+

∑
s,t∈N

wst(αs−αt)2+
∑
s

cAL(s)

(13)
where cAL(s) =

∑
i,j∈Gs

1
2wij ·

(
Di(xs, ys)−Dj(xs, ys)

)2
is the current alignment cost at vertex s. And

∑
s cAL(s) is

now a constant independent of α. Since (13) is quadratic in
α, we can update α in closed-form by solving the positive
semi-definite linear system obtained by setting the deriva-
tives of (13) to zeros. We solve the linear system using
Cholesky decomposition.

4.2. M-step: Optimize ELOWER

By fixing α, Optimizing EALL is equivalent to optimize
ELOWER

min
N,D

{
EMatchingCost(N,D) + λNSENormalSmooth(N,D)

+ λALEAlignment(N,D)
}

(14)

However, this subproblem is not yet directly solvable due
to the non-convexity of ρ(ni, di). Inspired by [25][21], we
adopt the quadratic splitting technique to relax the energy

min
N,D,Ñ,D̃

ERELAXED(N,D, Ñ, D̃) (15)

≡ min
N,D,Ñ,D̃

{
EMatchingCost(Ñ, D̃) +

θ

2
ECouple(N,D, Ñ, D̃)

+ λNSENormalSmooth(N,D) + λALEAlignment(N,D)
}

in which

ECouple(N,D, Ñ, D̃) =
∑
i

(Πi−Π̃i)
>Σ(Πi−Π̃i) (16)

where Πi = [n>i , di]
>, and Σ = diag(σn, σn, σn, σd) con-

trols the coupling strength between Πi and Π̃i. As the θ in
(15) goes to infinity, minimizing ERELAXED is equivalent to
minimizing ELOWER. We found that increasing θ from 0 to
100 in ten levels using the smooth step function offers good
numerical stability. The values of σd, σn are set to the in-
verse variances of the disparities and normals respectively
from the training images.

4.2.1 Optimize ERELAXED

We propose an algorithm similar to that in [25] to optimize
the relaxed energy. The algorithm operates by alternatively
updating Ñ, D̃ and N,D, which is summarized in Algo-
rithm 2.

Update Ñ, D̃. By fixing N,D, Problem (15) reduces to

min
Ñ,D̃

{
EMatchingCost(Ñ, D̃) +

θ

2
ECouple(N,D, Ñ, D̃)

}
(17)

Algorithm 2 Optimize ELOWER

set θ to zero
repeat

repeat
Minimize (17) by PatchMatch [4][5].
Minimize (18) by Cholesky decomposition.

until converged
Increase θ

until converged

This is a Nearest Neighbor Field (NNF) searching problem
in disparity plane space, which can be efficiently optimized
by PatchMatch [5][4].

Update N,D. By fixing Ñ, D̃, problem (15) reduces to

min
N,D

{θ
2
ECouple(N,D, Ñ, D̃) (18)

+ λNSENormalSmooth(N,D) + λALEAlignment(N,D)
}

It is easy to verify that all the three terms in (18)
are quadratic in N,D (details in supplementary materi-
als). Therefore the update can be done in closed-form by
Cholesky decomposition. Note that different from [25], we
are working on triangles instead of image pixels. Therefore
the update is much faster and scales to large size images.

5. Rendering
5.1. Triangulation and Mesh Generation

We propose a simple but effective method for image do-
main triangulation. First we partition the input image into
SLIC [2] segments and perform a joint polyline simplifi-
cation on each segment boundary. Second the output is
obtained by delaunay triangulating each polygonized SLIC
segment. We also try other triangulation approach, such as
the one presented in Fickel et al. [8]. We refer interested
readers to [8] for details.

Given the estimated piecewise planar disparity map and
the splitting variables, a 3D mesh is lifted from the triangu-
lation, where vertices with splitting probabilities > 0.5 are
split to multiple instances, or merged to their median value
otherwise. This results in a tightly aligned mesh and there
is no hand-chosen thresholds involved in contrast to Fickel
et al. [8]. Fig. 3 shows example 3D meshes generated by
our model.

5.2. View Interpolation

Given a stereo pair IL, IR and their corresponding
meshes, we now want to synthesize a new view at µ be-
tween the pair, where 0 ≤ µ ≤ 1 denotes the normalized
distance from the virtual view IM to IL (with µ = 0 the
position of IL, and µ = 1 the position of IR). First we



Figure 3. 2D image triangulations and 3D meshes from Middlebury 2.0 generated by our approach. Blue dots in the first row represent
triangle vertices with splitting probabilities greater than 0.5. Test cases from left to right are (Baby1, Bowling2, Midd1, Plastic, Rocks1)
respectively. Results on Baby1,Bowling2 uses our proposed triangulation method, results on Midd1, Plastic, Rocks1 use the one in [8].

(a) (b) (c) (d) (e)

Figure 4. Sensitivity and convergence analysis. (a)-(c) show that the results are not sensitive to γ1, γ2, γ3. (d) and (e) depict the error rate
and energy against the number of iterations, with different numbers of inner loops when solving ELOWER.

perform projective texture mapping on the proxy meshes,
then the interpolated view is rendered by blending the pro-
jections of two meshes on the new angle IM

IM (x, y) = (1− µ)IµL(x, y)δL(x, y) + µIµR(x, y)δR(x, y)
(19)

where IµL is the projection of the mesh of IL at position µ,
and δL(x, y) = 1 if IµL(x, y) is valid, and is 0 otherwise. IµL
and δR are defined analogly.

6. Experiments
To balance the subenergies, we employ the structured

SVM [11] to the learn the weights λAL, λDS, λNS, λSP,
λSS, where these parameters are optimized using the sub-
gradient descent approach in [11] during training. We use
five test cases Art, Motorcycle, Pipes, Shelves, Teddy from
Middlebury 3.0 as training images. For the three param-
eters γ1, γ2, γ3 which may need hand tuning, we found the
results are not sensitive to their values. As shown in figure 4
(a)-(c), when γ1, γ2, γ3 vary in the active range of their cor-
responding exponents, the average error rates vary in less
than 1.0 percentage, and we set γ1 = 30, γ2 = 60, γ3 = 0.8
according to the sensitivity figures. Figure 4 (d)-(e) provide
a convergence analysis of the optimization framework, with
different numbers of iterations when increasing θ in the in-

ner loop of Alg. 2. The energy decreases steadily as itera-
tion goes by. As expected, larger number of inner iterations
shows faster convergence. The most dominant drops of both
the error rate and the energy happen during the first three it-
erations. The error rate stays relatively stable after the first
three iterations while the energy continues to decrease gen-
tly. This phenomenon is expected as at later stages the error
rate is not able to reveal subtle changes less than 1.0 dispar-
ity.

6.1. Rendering Results

Fig. 6 presents a comparisons of rendering results on
the Middlebury 2.0 and the Herodion datasets1 with ground
truth intermediate views. Following Fickel et al. [8], we use
VSRS3.5 [18] to generate interpolated view using disparity
maps estimated by [24][12] as baselines, which are referred
as VSRS-Nonlocal and VSRS-Volume. Compared to the
point-based approaches (VSRS), our integrated approaches
produces better visual effects, for example the surrounding
of the reeindeer’s neck; the text “Pattern Recognition” on
the book, and the calibration pattern on the wall of the Hero-
dion test case. Fig. 5 shows a comparisons of the stereo

1The Herodion array generates a video stream from 22 synchronized
uncompressed images operating at 30 Hz on a single PC [3], courtesy from
Fickel et al. [8].



Aloe Baby1 Books Bowling2 Cloth3 Lamp.2 Laundry Reindeer Rocks1 Wood2
VSRS-Volume 26.13 27.45 24.20 26.02 25.75 28.88 21.67 25.03 28.46 29.76

VSRS-Nonlocal 25.86 28.39 25.83 27.47 25.97 30.99 24.03 26.03 29.63 31.47
Triangle-Nonlocal 27.01 31.61 28.35 30.14 31.39 31.50 27.04 27.34 34.35 31.50

Fickel et al. 27.69 32.15 28.41 30.10 31.31 31.76 27.82 27.70 34.45 33.28
Ours 29.34 35.84 30.07 33.16 35.05 36.28 28.66 31.97 35.95 37.72

Table 1. Comparison of PSNR values of the rendering results from sampled test cases on Middlebury 2.0.

(a) Left image (b) VSRS-Nonlocal (c) VSRS-Volume (d) Fickel et al. (e) Ours

Figure 5. Comparisons of estimated disparity maps on the Herodion datasets.

quality on the Herodion datasets. Compared to Fickel et
al. [8], our approach generates cleaner disparity maps and
sharper depth edges. Both [8] and ours are using the same
rendering pipeline, however, our approach produces higher
PSNR in all cases because of the better stereo quality.

Table 1 provides a comparisons on ten sampled test cases
from Middlebury 2.0 in terms of PSNR. Our model outper-
forms other approaches for all test cases. Also notice in all
the cases, the mesh-based approaches (including Fickel et
al), produce higher PSNR than the point-based approaches,
which demonstrates the advantages of using mesh struc-
ture. Moreover, with the reconstructed 3D meshes, ren-
dering can be done much faster (0.1s) than VSRS (1s).
Among the mesh-based approaches, we compare our results
to Triangle-Nonlocal, which constructs the 3D meshes us-
ing the pre-estimated disparity maps from [24] by plane fit-
ting. In all the cases, we obtain higher PSNR results, which
demonstrates the advantages of the “integrated” approach
compared to the “separated” one.

6.2. Stereo Results

We evaluated our model on the new Middlebury 3.0 [13]
benchmark and currently ranks at the first place. Mid-
dlebury 3.0 is a new challenging benchmark suited with
30 high resolution test cases divided into training and test
sets, including stereo pairs with different exposures, light-
ing conditions and slight rectification errors. Fig. 7 shows a
comparison of the estimated disparity maps between SGM
[10], Yamaguchi et al. [23] and our method, with corre-
sponding error rates listed on Table 2. Our approach out-
performs all the other approaches in all sampled test cases,
including Yamaguchi et al. [23], which also uses a slanted
plane model over super-pixels2. Our model also produces

2We use the publicly available code of [23] and set the preferred num-
ber of super-pixels to 8000 for fairness.

Adiron. Motor. Piano Playt. Recyc.
Ours 7.1 9.4 15.4 13.3 13.5

Yamaguchi [23] 8.1 10.6 19.0 15.3 13.6
PatchMatch [5] 8.1 11.0 17.4 16.2 14.3

SGM [10] 15.3 10.9 16.4 15.8 14.6
Table 2. Bad pixel rates of sampled test cases evaluated at 1-pixel
error thresholds on Middebury 3.0.

depth discontinuities that are more respectful to the ground
truth scene structure, such as the mug handle in Adirondack,
and the left boundary of the dustbin in Recycle. In the ex-
periment we use 8000 triangles, and each test case takes
about 60s on CPU. The source code is available for readers
to reproduce our results.

Contribution of the Latent Variables. To verify that
the latent splitting variables do help improve the stereo qual-
ity, we compare our model with PatchMatch [5], which is
essentially Eq. (1) in our formulation. To ensure fairness,
both methods uses the same triangulation. As shown in Ta-
ble 2, with the help of the splitting variables, our model
improve the error rates of PatchMatch by 2.0 on average.

7. Conclusion

We have presented a global stereo model for view in-
terpolation. Compared with existing stereo-based view in-
terpolation approaches, where disparity map computation
and mesh generation are separated into two steps, our ap-
proach integrates the two processes in a unified model. The
proposed model is able to generate high quality disparity
maps as well as synthesize new view angles with high vi-
sual coherency. Evaluations on the challenging Middlebury
3.0 benchmark demonstrated its excellent performance.



(a) GT (b) VSRS-Nonlocal (c) VSRS-Volume (d) Fickel et al. (e) Ours

Figure 6. Comparisons of view interpolation results on Reindeer, Books, Herodion datasets. Red digits at top right corners denote PSNR
values. Blue boxes in the images denotes selected failed regions (best viewed zooming in).

(a) Left (b) GT (c) SGM (d) Yamaguchi et al. (e) Ours

Figure 7. Results on the high resolution Middlebury 3.0 [13] benchmark with ground truth (Adirondack, Motorcycle, Piano, Playtable,
Recycle). Test cases are of averaged size 1400× 1000.
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