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Abstract

With new depth sensing technology such as Kinect providing high quality synchro-

nized RGB and depth images (RGB-D data), combining the two distinct views for

object recognition has attracted great interest in computer vision and robotics commu-

nity. Recent methods mostly employ supervised learning methods for this new RGB-D

modality based on the two feature sets. However, supervised learning methods always

depend on large amount of manually labeled data for training models. To address the

problem, this paper proposes a semi-supervised learning method to reduce the depen-

dence on large annotated training sets. The method can effectively learn from relative-

ly plentiful unlabeled data, if powerful feature representations for both the RGB and

depth view can be extracted. Thus, a novel and effective feature termed CNN-SPM-

RNN is proposed in this paper, and four representative features (KDES [1], CKM [2],

HMP [3] and CNN-RNN [4]) are evaluated and compared with ours under the unified

semi-supervised learning framework. Finally, We verify our method on three popular

and publicly available RGB-D object databases. The experimental results demonstrate

that, with only 20% labeled training set, the proposed method can achieve competitive

performance compared with the state of the arts on most of the databases.
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1. Introduction1

Recently, RGB-D data has attracted great interest in computer vision and robotics2

community with the advent of new depth sensors, such as Kinect. The Kinect-style3

depth cameras are capable of providing high quality synchronized images or videos4

of both color and depth, which represent an opportunity to dramatically improve the5

performance of many vision problems, e.g., object recognition [5, 6], detection [7, 8, 9],6

tracking [10, 11, 12], SLAM [13, 14] and human activity analysis [15, 16]. This is7

mainly because that depth information has many extra advantages: being invariant8

to lighting and color variations, allowing better separation from the background and9

providing pure geometry and shape cues. Furthermore, many RGB-D datasets [5, 6,10

13, 14, 15, 17, 18] have been published for public use to promote the development of11

such research areas.12

This paper mainly focuses on object recognition, which is a fundamental problem in13

computer vision and pattern recognition. Although many methods [1, 2, 3, 4, 19] have14

been presented to promote RGB-D object recognition, they chiefly aim at extracting15

effective features from the novel RGB-D data and using a supervised learning model to16

achieve good classification performance. However, supervised learning models always17

require for large amount of manually labeled data. The collection of enough labeled18

training set is an expensive and difficult task. Thus, it is important to get rid of this19

problem by utilizing relatively plentiful and convenient unlabeled RGB-D data.20

With the ability to handle the unlabeled data, a semi-supervised learning framework21

is proposed in this paper by considering the two distinct views of RGB-D data effec-22

tively. Although there are many successful semi-supervised learning algorithms in the23

literature, e.g., self-training [20, 21, 22], co-training [23, 24] and graph-based method-24

s [25, 26, 27], we are especially interested in the co-training method because of its u-25

nique advantages over the RGB-D data: co-training was theoretically proved to be very26

successful in combining the labeled and unlabeled data under two strong assumption-27

s (including “conditional independence given the label”)) in [23], then the work [24]28

proved that much weaker assumptions were sufficient to guarantee co-training, when29

given appropriately strong PAC-learning algorithms on each view. Intuitively, the two30

weaker assumptions can be described as follows: (1) Each example contains two dis-31

tinct views, and each view provides sufficient information to determine the label of the32

example; (2) The two views should not be too highly correlated. It means that, there33
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(a) RGB (b) grayscale (c) depth (d) surface normals

Figure 1: Four modalities including RGB, grayscale, depth, and surface normals are
alternative to capture cues for RGB-D object recognition. RGB images and depth
maps are directly imaged by Kinect-style cameras, while grayscale images and surface
normals are computed from the RGB images and depth maps respectively. In the figure,
each row consists of two instances from the same category (Examples are from the
Washington RGB-D object dataset [6]).

should exist some examples which can be confidently recognized by one view but not34

by the other view (or vice versa) to make the co-training algorithm work effectively.35

RGB-D data meets the two assumptions very well. Firstly, RGB-D data contains two36

distinct views, RGB and depth. Both of them can provide useful cues for object recog-37

nition: RGB images can describe rich color, texture and appearance information for38

the object, while depth maps can sketch pure geometry and shape cues. Secondly, the39

image capturing modes of RGB (e.g., RGB cameras) and depth (e.g., infrared cameras)40

are very different, guaranteeing the independence of the two views.41

Given two distinct views (RGB and depth) for each example, the key to the suc-42

cess of co-training is to obtain effective feature representation for each view. Thus a43

powerful feature CNN-SPM-RNN will be proposed in this paper based on the feature44

CNN-RNN [4]. CNN-RNN combines a single convolutional neural network (CNN)45

and multiple recursive neural networks (RNN [28]) to learn high-level features for each46

RGB-D object. Since learning the optimal structure of each RNN tree from the raw da-47

ta is highly time consuming as described in [28], CNN-RNN utilizes fixed-tree RNN48

structure to hierarchically aggregate the CNN responses very efficiently. However, the49

fixed-tree RNN requires for the fixed-size of the inputs by simply cropping or warp-50

ing all the images, which may degrade the recognition performance after such artificial51

processing. Inspired by the pioneer work [29], which applied a spatial pyramid pooling52

layer (SPM [30]) to the supervised deep learning model [31] to adapt the model for ar-53

bitrary sizes of inputs, we extend its core idea to the unsupervised CNN-RNN feature54
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learning model and design a new feature learning structure, termed CNN-SPM-RNN.55

Towards SPM layer, the main differences between CNN-SPM-RNN and the work [29]56

are twofold: (1) A pooling layer with different pyramid partitions in [29] is sufficient57

to guarantee the success of the supervised deep learning model, benefiting from the58

back-propagation of errors and the fine-tuning of filters. However, we empirically59

find that a single pooling layer can even make the unsupervised CNN-RNN model60

worse, probably because the low-level convolutional responses cannot capture local61

object structures very effectively after pooling. Thus a feature coding layer is added62

to encode the convolutional responses and high-level feature responses are obtained to63

represent local information powerfully. Then the pooling layer is performed to result in64

fixed-scale feature maps for the fixed-tree RNNs. (2) Compared to the 2D spatial pyra-65

mid pooling for the RGB modality in [29], 3D spatial pyramid pooling is utilized for66

the depth modality to effectively capture shape cues of objects. The details are given67

in Section 2.2. Further more, we find that two additional modalities, grayscale images68

and surface normals, can largely benefit view representation, as shown in Fig. 1. We69

introduce a unified feature evaluation framework by combining RGB and grayscale to70

capture visual appearance (i.e., the RGB view), while depth and surface normals to71

capture shape cues (i.e., the depth view) for all the representative features, including72

KDES [1], CKM [2], HMP [3], CNN-RNN [4] and CNN-SPM-RNN.73

An early version of our work was presented in [32] to explore co-training for RGB-74

D object recognition. In this paper, we extend [32] in the following aspects: developing75

a more powerful feature termed CNN-SPM-RNN based on [4, 32], introducing a uni-76

fied framework to fairly evaluate all the representative features, and presenting a wide77

array of experiments to demonstrate the effectiveness of the proposed semi-supervised78

method with powerful RGB-D features.79

The major contributions of this paper are summarized as follows.80

• Propose a complete and systematic semi-supervised learning framework for RGB-81

D object recognition using co-training. We theoretically analyse that the frame-82

work can take full advantage of the characteristics of the new RGB-D data, and83

significantly benefit object recognition by learning from large amount of unla-84

beled RGB-D data.85

• Present a novel feature CNN-SPM-RNN to effectively represent RGB-D data.86

To the best of our knowledge, this is the first work to successfully apply SPM87
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Figure 2: Our semi-supervised learning framework for RGB-D object recognition.
Firstly, we extract features to represent the RGB and depth view of each object re-
spectively. Then we employ co-training to iteratively learn from the unlabeled data
using the two distinct feature sets. In the figure, TC means triangular coding, PP mean-
s pyramid pooling, SC means sparse coding (see Section 2.3 for details).

to the unsupervised deep learning model to address the problem of cropping or88

warping. The core idea is inspired from the pioneer work [29], which utilized89

SPM layer in the supervised deep learning model and yielded impressive results.90

• Analyse and Evaluate most representative RGB-D features in an unbiased way91

by utilizing four data modalities, including RGB, grayscale, depth and surface92

normals, which can provide a meaningful guideline how to best represent the93

new RGB-D data.94

The rest of this paper is organized as follows: Section 2 proposes our semi-supervised95

learning framework for RGB-D object recognition, including the semi-supervised learn-96

ing method based on co-training, the feature CNN-SPM-RNN, and a unified framework97

for feature evaluation. Section 3 empirically evaluates and ranks all the representative98

features in an unbiased way, and shows the comparison of our semi-supervised method99

with the state of the arts on several public RGB-D object databases. Finally, Section 4100

concludes the paper and discusses the future work.101

2. Our Semi-supervised Framework102

As shown in Fig. 2, our semi-supervised learning framework is proposed for RGB-103

D object recognition. There are three modules in the framework: (1) feature representa-104

tion for the RGB view; (2) feature representation for the depth view; and (3) exploiting105

co-training to utilize a small set of labeled data and large amount of unlabeled data.106
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The core idea of the framework is to improve the two classifiers trained on the two107

distinct feature sets iteratively by co-training. Thus how to extract effective feature108

representation for each view is the fundamental step.109

In the following subsections, we first prove that co-training can succeed in learning110

from unlabeled RGB-D examples, and propose the co-training algorithm for RGB-D111

object recognition. Then we introduce our feature CNN-SPM-RNN, followed by a112

unified framework to evaluate recent state-of-the-art features for RGB-D objects.113

2.1. Semi-supervised Learning114

We employ co-training as our semi-supervised learning method to learn from the115

unlabeled RGB-D data, as shown in Fig. 2. Firstly, Two assumptions to guarantee116

the success of learning with co-training are introduced. Then a specific co-training117

algorithm for RGB-D object recognition is proposed.118

2.1.1. Theoretical Assumptions119

Some notations are given as follows: Let D denote the distribution over the feature120

space F = F1×F2, where F1 and F2 correspond to two different views of an example.121

Assume F+ and F− are the positive and negative regions of F respectively (for sim-122

plicity we consider binary classification here), and Let c be the target function. Then123

for i ∈ {1, 2}, we define F+
i = {fi ∈ Fi : ci(fi) = 1} and F−

i = Fi − F+
i . In order124

to bootstrap co-training, a initial labeled set for the two views S0
1 ⊆ F+

1 and S0
2 ⊆ F+

2125

are provided. During the iterative learning procedure of co-training, a hypothesis hi is126

devised as a subset of Fi, where fi ∈ hi means that hi is confident that fi is positive,127

and fi /∈ hi means that hi has no opinion.128

The research [24] proved it was sufficient for co-training to succeed, when given129

the two assumptions on the underlying data distribution:130

• The learning algorithm for each view is able to learn from positive data only.131

• The marginal distribution D+ is ϵ-expanding (ϵ > 0 ).132

The first assumption means that, ∀D+
i over F+

i , given access to examples from D+
i ,133

each learning algorithm is able to produce a hypothesis hi such that Pr(errorD+
i
(hi) ≤134

ϵ) ≥ 1 − δ, where ϵ, δ > 0. This can be thought of as predicting the examples either135

“positive with confidence” or “has no opinion”. According to [24], this assumption is136

easy to fulfill in practice if the positive class is cohesive and the negative class is not;137
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Algorithm 1 Co-Training Algorithm for RGB-D Object Recognition

Input:
FRGB: RGB feature set; Fdepth: depth feature set;
θRGB: a confidence threshold for RGB feature set;
θdepth: a confidence threshold for depth feature set;
L: labeled pool; U: unlabeled pool;
I: the maximum number of iteration rounds

Output:
CRGB:RGB classifier; Cdepth: depth classifier

1: i← 0;
2: repeat
3: CRGB ← train(FRGB,L);
4: Cdepth ← train(Fdepth,L);
5: CRGB → predict(FRGB,U), for each predicted class cj , choose |nj | most

confident examples and add them to L, ∀nj , Score(nj) ≥ θRGB;
6: Cdepth → predict(Fdepth,U), for each predicted class cj , choose |nj | most

confident examples and add them to L, ∀nj , Score(nj) ≥ θdepth;
7: i++;
8: until i > I or U is empty
9: return CRGB and Cdepth;

The second assumption can be interpreted as the following definition:138

Definition D+ is ϵ-expanding if for any S1 ⊆ F+
1 , S2 ⊆ F+

2 , we have139

Pr(S1 ⊕ S2) ≥ ϵmin
[
Pr(S1 ∧ S2),Pr(S̄1 ∧ S̄2)

]
.

where Pr(S1 ∧S2) denotes the probability mass on examples that are confidently pre-140

dicted as positive region by both views, and Pr(S1⊕S2) denotes the probability mass141

on examples for which we are confident about just one view. Note that ϵ-expanding142

is necessary to guarantee co-training will succeed, because if S1 and S2 are confident143

sets and do not expand, then we might never see the expected situation that examples144

for one hypothesis could help the other.145

2.1.2. Co-training Algorithm146

An intuitive interpretation of co-training is as follows: Firstly, two initial classifiers147

over the respective views are trained on a small labeled sample. Then each classifier is148

used to label the confident examples for the other classifier, for which these examples149

can be seen as random training instances. In this case, each classifier can benefit from150

the additional examples by the other one and improve its classification accuracy in151

every rounding training.152

We propose our co-training algorithm for RGB-D object recognition (multi-class153
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Figure 3: An overview of the feature learning structure of CNN-SPM-RNN. The SP-
M layer in this paper consists of feature coding, spatial pyramid pooling, and re-
organization, which can input convolution feature maps with arbitrary sizes (e.g.,
w′

1 × h′
1 × k1, where w′

1 × h′
1 is the size of each feature map, and k1 is the num-

ber of feature maps), and then output fixed-scale feature maps (i.e., w, h and k2 are
fixed to the same for all inputs.

classification) in Algorithm 1. Firstly, we extract feature representations FRGB and154

Fdepth for the RGB and depth view respectively. Then we train two linear SVM classi-155

fiers CRGB and Cdepth based on a small set of initial labeled examples L using the two156

feature sets. CRGB and Cdepth are applied to predict the examples from the unlabeled157

training sets U separately. For each classifier, |nj |most confidently predicted instances158

of each class whose scores are higher than a threshold will be transferred from U to L159

in every iteration. Generally, we assign |nj | a small value and keep it the same for all160

the classes. The algorithm runs until the iteration number reaches the given maximum161

threshold or all the unlabeled examples in U are labeled. The outputs of the algorithm162

are the updated classifiers CRGB and Cdepth.163

At the inference time, CRGB and Cdepth are combined to predict the category of164

the given example based on their classification scores:165

c = argci∈χMax(αSci
CRGB

+ (1− α)Sci
Cdepth

) (1)

where χ is the label set of all the categories, Sci
CRGB

and Sci
Cdepth

are predicted scores166

of category ci for an given example, and α is the coefficient to control the contribution167

of each view.168

2.2. CNN-SPM-RNN169

CNN-SPM-RNN is built on the unsupervised feature learning structure of CNN-170

RNN [4]. CNN-RNN mainly consists of three steps: resizing all the images to the171
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same scale, extracting low level feature for each image by a single convolutional lay-172

er, and finally applying multiple fixed-tree RNNs to learn high order feature repre-173

sentation based on the low level feature responses. Although CNN-RNN can learn174

powerful features from the raw data, such artificial processing of the first step, i.e.,175

resizing all the images to the same scale by simply cropping or warping the images,176

may degrade the performance of the learned features. In order to adopt CNN-RNN177

model for images of arbitrary sizes, we replace the first step of CNN-RNN by a SPM178

layer, which is composed of three steps: feature coding, spatial pyramid pooling and179

re-organization, as showed in Fig. 3. To fairly compare CNN-SPM-RNN with CNN-180

RNN, the parameters of the single-layer CNN and multiple RNNs are kept the same181

as the work [4], i.e., k1 = 128 filters with 9 × 9 size are learned for the single-layer182

CNN, the input fixed-scale feature maps for each RNN are 27× 27× 128-dimensional183

(w = 27, h = 27, k2 = 128). Now we describe the details of each step of the proposed184

SPM layer.185

Feature Coding. The goal is to learn high-level local features to represent ob-

jects more powerfully, compared with the low-level convolutional descriptors. First, a

codebook {c1, c2, ..., ck2
} (k2 = 128, ci ∈ Rk1=128) is learned by k-means cluster-

ing over the sampled convolutional descriptors. Second, each convolutional descriptor

x ∈ Rk1=128 is encoded by the codebook with triangular voting [33]:

f(x) = (fc1(x), fc2(x), ..., fck2
(x)),

s.t. fci(x) = max(0, µ− ∥x− ci∥22),

µ = 1
k2

∑k2
i=1 ∥x− ci∥22.

(2)

where f(x) ∈ Rk2=128.186

Spatial Pyramid Pooling. 2D and 3D spatial pyramid pooling are employed for187

the RGB and depth modality, respectively. For the 2D spatial pyramid pooling, the188

partitions are constrained in the two-dimensional image space. While for the 3D spa-189

tial pyramid pooling, the partitions are performed in the three-dimension depth space.190

See Fig. 3 for an intuitive understanding. The work [34] also showed that 3D spatial191

pyramids were necessary to represent the depth modality. In this paper, we set the192

number of the pyramid bins as 27 × 27 = 729, in order to obtain the same size of the193

fixed-scale feature maps as [4] for a fair comparison. For each bin, max pooling is used194

to aggregate the neighboring features to a 128-dimensional feature vector.195
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Re-Organization. After spatial pyramid pooling, the convolutional responses with196

arbitrary sizes are transformed to a fixed number of feature vectors. We re-organize197

all the feature vectors to a 3D feature map (∈ R27×27×128) with a fixed order. Finally,198

the 3D feature map is input to multiple RNNs to learn the global feature representation199

as [4].200

We employ CNN-SPM-RNN to extract features for each modality of RGB (2D201

spatial pyramids), grayscale (2D spatial pyramids), depth (3D spatial pyramids) and202

surface normals (2D spatial pyramids), respectively. For each object, the RGB feature203

and grayscale feature are concatenated to represent the appearance information, while204

depth feature and surface normal feature are combined to capture shape cues.205

2.3. Feature Analysis and Evaluation206

Various features have already been developed for RGB-D object recognition. In this207

section, we introduce four state-of-the-art features: kernel descriptors (KDES) [1], con-208

volutional k-means descriptors (CKM) [2], hierarchical matching pursuit (HMP) [3],209

and convolutional-recursive neural networks (CNN-RNN) [4], which are more discrim-210

inative and robust than the popular orientation histogram features, such as SIFT [35]211

and spin images [36]. In order to compare these features with the CNN-SPM-RNN,212

we analyse the characteristics of them first, and then propose a unified framework to213

extract all these features effectively for an unbiased evaluation.214

2.3.1. Feature Analysis215

The four representative features: KDES [1], CKM [2], HMP [3] and CNN-RNN [4],216

employ very different methods to extract features from the raw data, compared to the217

handcrafted features utilized in the baseline work [6]. Furthermore, they take advan-218

tage of different data modalities among RGB images, grayscale images, depth maps219

and surface normals to capture cues for object recognition, as shown in Table 1. The220

analysis of the above features is shown as follows:221

The baseline work [6] extracts a set of handcrafted features to represent the two222

distinct views of RGB-D objects. To capture the visual appearance of the RGB view,223

they extract SIFT descriptors over grayscale images, texton histograms [37] and color224

histograms over the RGB images. The shape of the depth view is represented by spin225

images computed from depth maps and surface normals. Regardless of their effective-226

ness, these well tuned handcrafted features are hard to design and only can capture a227
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Features
RGB View Depth View

RGB Grayscale Depth Surface Normals

Handcrafted features [6]
√ √ √ √

KDES [1]
√ √ √ √

CKM [2]
√

−
√

−

HMP [3]
√ √ √ √

CNN-RNN [4]
√

−
√

−

CNN-SPM-RNN
√ √ √ √

Table 1: Different data modalities are exploited to capture cues for object recognition
for different methods. Generally, RGB and grayscale images can capture visual ap-
pearance of the RGB view, while depth maps and surface normals can capture shape
information of the depth view.

small set of recognition cues from raw data. For example, SIFT is able to capture some228

sort of edge information while ignores color information; Spin images are extended229

to 3D objects analogous to SIFT over 2D images, but also has limited capability to230

capture useful shape or geometry information.231

KDES [1] provides a generalized way to extend orientation histogram features like232

SIFT to a broad class of similar feature patterns. The previous work [38] has already233

shown that the well-designed SIFT features are equivalent to a certain type of match234

kernel over image patches. Thus, it is very convenient to design a set of kernel descrip-235

tors on top of various attributes, including 3D shape, physical size, edges, gradients,236

etc.237

CKM [2] adapts single-layer feature learning networks based on k-means clus-238

tering for 2D images [33] to RGB-D data. To keep the feature learning process as239

effective as [33], CKM takes the depth channel as the fourth channel of the RGB chan-240

nels and directly learns features from the four channels. By using the state-of-the-art241

image pre-processing and feature encoding of [33], CKM can obtain useful transla-242

tional invariance of low-level features from raw data such as edges, and can be robust243

to small deformations of objects. However, without information of grayscale images244

and surface normals, the performance of CKM is restricted a lot for object recognition.245

HMP [3] constructs a two-layer architecture to generate features over complete246

RGB-D images based on sparse coding. It can discover low-level structures such as247

edges at the first layer, and high-level structures such as shapes and object parts at the248

second layer. HMP learns features from each data modality, then combines the RGB249
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Figure 4: A unified framework to represent the RGB and depth view of RGB-D objects.
For each type of features, we extract them from four data modalities, respectively. Then
combine the RGB and grayscale features to capture visual appearance of the RGB view,
and the depth and normal features to capture shape of the depth view.

and grayscale features to represent the visual appearance of the RGB view, and captures250

the shape cues by concatenating the depth and surface normal features.251

CNN-RNN [4] is a deep feature learning model based on a combination of con-252

volutional and recursive neural networks. The single CNN layer can learn low-level253

translationally invariant features which are assembled by multiple RNNs [28] to con-254

struct high order representation. Similar to CKM, CNN-RNN only makes use of RGB255

images and depth maps for object recognition.256

Both the baseline work and KDES utilize manually designed features, while CK-257

M, HMP, CNN-RNN and CNN-SPM-RNN belong to unsupervised feature learning258

methods.259

2.3.2. Unbiased Feature Evaluation260

To obtain an unbiased evaluation for all the above features, we propose a unified261

framework to represent RGB-D objects by adapting them to the four data modalities, as262

shown in Fig. 4. For each type of features, the RGB and grayscale images are used to263

capture visual appearance of the RGB view, and the depth and surface normal images264

are exploited to capture shape cues of the depth view. We can obtain more powerful265

view representation by utilizing additional information of grayscale and surface nor-266

mals, compared to those only based on RGB and depth in their original papers.267

12



Specifically, we are capable of extracting CKM descriptors from each data modali-268

ty respectively following the same process of [2] over RGB-D images. Then, we learn269

the image-level features for each data modality using a bag-of-words model with spa-270

cial pyramid pooling [30]. Finally, following the framework, CKM features from the271

four data modalities will be combined to represent the RGB view and depth view re-272

spectively. To distinguish our CKM features from the original paper [2], we call them273

enhanced CKM; Similarly, we employ CNN-RNN to learn features not only from the274

RGB and depth images but also from the grayscale and surface normal images. Then275

the RGB and grayscale features are combined to describe the RGB view, while the276

depth and surface normal features are concatenated to represent the depth view. We277

call our CNN-RNN features enhanced CNN-RNN. Since the baseline work, KDES,278

HMP and CNN-SPM-RNN have already taken advantage of the four data modalities279

for object recognition, we keep them the same with the original papers.280

3. Experiments281

Our experiments are carried out on three publicly available RGB-D object datasets.282

On the first challenging Washington RGB-D Object Database [6], we evaluate all the283

representative features in an unbiased way and compare the performance of the pro-284

posed semi-supervised method with the state of the arts. On the other two datasets,285

we further verify the effectiveness of the semi-supervised learning method. All the286

experimental codes including the introduced features and the semi-supervised learning287

method are released at the website http://www.openpr.org.cn/.288

We follow the unified framework in Section 2.3.2 to extract all the introduced fea-289

tures for the RGB view (RGB + grayscale) and the depth view (depth + normals). The290

experimental settings of each feature extraction method are as follows:291

KDES: To construct image-level features for each kind of kernel descriptors, we292

follow the process of [1] to obtain high performance, which considers [1× 1, 2× 2, 3× 3]293

pyramid subregions, and use EMK [39] with 500 basis vectors learned by k-means on294

400,000 kernel descriptors sampled from training images. The resulting dimensionali-295

ty per kernel descriptor based image representation is (1 + 4 + 9)× 500 = 7000, then296

reduced to 1000 using principal component analysis.297

Enhanced CKM: To guarantee the feature learning method effective and success-298

ful as [2], a bag-of-words model is exploited to construct image-level features for the299
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CKM descriptors extracted from each data modality. We learn 1000 codewords us-300

ing k-means on 400,000 descriptors and use average pooling with spacial pyramids301

[1× 1, 2× 2, 3× 3] to compute the feature responses. The final dimensionality of per302

image-level feature representation is 14,000.303

HMP: HMP can directly learn the image-level features from each data modality.304

Note that we only aggregate the responses of the patch features at the second layer305

instead of a jointly pooling [3], because the dimensionality of the jointly pooling is306

up to 36,050 (grayscale, depth) or 58,100 (RGB, normals) per object, which requires307

too much memory and computing time. Our processing can reduce the dimension-308

ality of all the four modalities’ representations to 7,000 and can obtain approximate309

performance.310

Enhanced CNN-RNN: Similar to [4], for each data modality (resized to the fixed-311

scale, e.g., 148×148), we learn 128 filters by k-means clustering over the patches, and312

use 64 randomly initialized RNNs to compose the convolutional responses to the final313

image representation with 128× 64 = 8192 dimensions.314

CNN-SPM-RNN: CNN-SPM-RNN is proposed to extract powerful features from315

the raw data (without cropping or warping). For a fair comparison, the parameters316

of the single-layer CNN and multiple RNNs are kept the same with the CNN-RNN317

model [4]. Similarly, to obtain the same size of the fixed-scale feature map, the size of318

the codebook is set to k2 = 128, and the number of the pyramid bins is set to 27×27 =319

729. Since there are a lot of selectable ways to partition the image to collect the equal320

number of bins, we simply choose one without fine-tuning. The configurations are321

given below.322

2D spatial pyramids: {3× 3, 8× 8, 16× 16, 20× 20}323

3D spatial pyramids:

{1× 1× 1, 1× 1× 2, 1× 1× 4, 1× 1× 8, 1× 1× 16, 1× 1× 32, 1× 1× 36,

1× 3× 1, 1× 3× 2, 1× 3× 4, 1× 3× 8, 1× 3× 16, 1× 3× 32,

3× 1× 1, 3× 1× 2, 3× 1× 4, 3× 1× 8, 3× 1× 16, 3× 1× 32,

2× 2× 1, 2× 2× 2, 2× 2× 4, 2× 2× 8, 2× 2× 16, 2× 2× 32}.

Finally, the re-organization 3D feature map of each modality of each object is input324

into the fixed-tree RNNs, and composed to the global feature representation with 128×325

64 = 8192 dimensions.326
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Figure 5: Object examples from the Washington RGB-D object database. Each object
(RGB + depth) shown here belongs to a different category.

3.1. Washington RGB-D Object Database327

The first experimental database is a large-scale hierarchical multi-view RGB-D ob-328

ject dataset [6]. The database consists of a total of 207,920 RGB-D images containing329

300 physically distinct everyday object instances (see Fig. 5). All the instances are330

grouped into 51 categories. Each object instance is imaged from three viewing heights331

(30◦, 45◦ and 60◦ above the horizon) while it rotates on a turntable, resulting in roughly332

600 images per instance. We subsample every 5th frame for each instance and reduce333

the size of the total database to 41,877 RGB-D images.334

This paper focuses on category recognition. The dataset settings for supervised335

learning and our semi-supervised learning are given as below: (1) for supervised learn-336

ing, we follow the setting in [6], which provides 10 random splits to generate training337

and test sets from the database. For each split, one object instance is selected random-338

ly from each category for testing and all remaining object instances are for training,339

resulting in around 35,000 training examples and 6,877 test examples. Note that all340

training sets are labeled for supervised learning; (2) for our semi-supervised learning,341

the main setting is the same as the supervised learning, but the training set is randomly342

divided into two parts: labeled and unlabeled examples, e.g., if we label 20% of the343

training set, we get around 7,000 labeled and 28,000 unlabeled for the training set.344

Note that the learning process of co-training is based on the labeled and unlabeled ex-345

amples of the training set. All the experiments are repeated 10 times on the test set and346

the average accuracies are given.347
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Methods Labeled Size Depth RGB Combine
Linear SVM [6] 35k 53.1± 1.7 74.3± 3.3 81.9± 2.8
Kernel SVM [6] 35k 64.7± 2.2 74.5± 3.1 83.8± 3.5

Random Forest [6] 35k 66.8± 2.5 74.7± 3.6 79.6± 4.0
IDL [19] 35k 70.2± 2.0 78.6± 3.1 85.4± 3.2

3D SPMK(L=2) [34] 35k 67.8 – –
KDES [1] 35k 78.8± 2.7 77.7± 1.9 86.2± 2.1
CKM [2] 35k – – 86.4± 2.3

original HMP [40] 35k 70.3± 2.2 74.7± 2.5 82.1± 3.3
HMP [3] 35k 81.2± 2.3 82.4± 3.1 87.5± 2.9

CNN-RNN [4] 35k 78.9± 3.8 80.8± 4.2 86.8± 3.3
CNN-RNN+CT [32] 7k 77.7± 1.4 81.8± 1.9 87.2± 1.1

enhanced CNN-RNN+CT 7k 82.0± 2.1 84.1± 1.3 89.9± 1.3
CNN-SPM-RNN+CT 7k 83.6± 2.3 85.2± 1.2 90.7± 1.1

Table 2: Comparison of recent results on the Washington RGB-D object database. CT
means the proposed semi-supervised learning method with co-training.

3.1.1. Comparison to the state-of-the-art348

We compare the results of our semi-supervised learning method to the recent meth-349

ods, as shown in Table 2. For semi-supervised learning, we only label 20% of the350

training set, and exploit the enhanced CNN-RNN and CNN-SPM-RNN to extrac-351

t RGB-D features, respectively. We utilize linear SVMs to train the two classifiers,352

and set α = 0.65, I = 500 in Equation 1 when combine the two classifiers to predict353

the test set. The results demonstrate that our method can achieve the state-of-the-art354

performance against other methods. Furthermore, the CNN-SPM-RNN features are355

more discriminative than the enhanced CNN-RNN features, showing the effectiveness356

of maintaining the natural data sizes and aspect ratios by the SPM layer.357

Among all these methods, the previous work [32] also employs semi-supervised358

learning method for RGB-D object recognition. However, The work [32] only extract-359

s features from RGB images and depth images based on the CNN-RNN model [4],360

without considering grayscale images and surface normals. The experimental result-361

s also demonstrate the recognition performance can be improved with the additional362

information provided by grayscale and surface normals.363

3.1.2. Unbiased Feature Evaluation in Supervised Setting364

Since the two distinct feature sets FRGB and Fdepth are crucial for our semi-365

supervised learning, it’s very necessary for us to fairly evaluate different features and366

choose the best one. Firstly, we give unbiased feature evaluation in supervised setting:367
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Methods Depth RGB Combine
KDES [1] 78.8± 2.7 77.7± 1.9 86.2± 2.1

enhanced CKM 82.8± 2.4 81.8± 2.7 87.5± 2.4

HMP [3] 81.2± 2.3 82.4± 3.1 87.5± 2.9

enhanced CNN-RNN 82.4± 2.3 84.8± 1.4 89.9± 1.4

CNN-SPM-RNN 83.4± 2.4 85.4± 1.3 90.7± 1.4

Table 3: Unbiased feature evaluation in supervised setting. Here all the training exam-
ples of size 35k are labeled, and linear SVM is used as our classifier.

All the five feature extraction methods are exploited to represent the RGB-D objects368

respectively as introduced in Section 2.3, and linear SVMs are used as our classifiers.369

We set α = 0.65 when combine the two classifiers CRGB and Cdepth to recognize370

objects. The results are shown in Table 3.371

It is worth to note that the ranking results in our evaluation are quite different from372

the published results. As shown in Table 2, the published results are ranked as fol-373

lows: KDES < CKM < CNN-RNN < HMP. However, the capabilities of CKM and374

CNN-RNN are restricted a lot since grayscale images and surface normals are ignored375

in [2, 4]. The reasonable ranking results in our unbiased feature evaluation in Table 3376

are: KDES < enhanced CKM, HMP < enhanced CNN-RNN. It can be analysed that377

kernel descriptors are a set of generalized histogram features like SIFT, although differ-378

ent kernel descriptors can be designed to capture different cues of objects, this kind of379

handcrafted features still have limited capability to describe an object; Both enhanced380

CKM and HMP are unsupervised feature learning models, which can learn more pow-381

erful features from the raw data than a set of manually designed kernel descriptors. The382

unsupervised learning structure can learn translational invariance of low-level features383

(the first layer in enhanced CKM and HMP) as well as some sort of high-level struc-384

tures (the second layer of HMP) from the raw data. The enhanced CNN-RNN performs385

better, which employs a deep feature learning structure to discover discriminative and386

robust features. Our CNN-SPM-RNN achieves the state-of-the-art performance. Ex-387

perimental results imply that CNN-SPM-RNN features are of the highest probability388

to guarantee the success of co-training in learning from the unlabeled RGB-D data.389

3.1.3. Unbiased Feature Evaluation in Semi-supervised Setting390

The same experiments are executed in the semi-supervised setting. Similarly, we391

extract the five features as the unified framework in Section 2.3, then exploit co-training392
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Figure 6: Unbiased feature evaluation in semi-supervised learning. We only label 20%
(around 7k) of the training set, and use linear SVM as our classifiers. In the figure, we
only report the combined results on the testing set.

to iteratively improve the two linear SVM classifiers through learning from the unla-393

beled data. In the learning process, we set |nj | = 2 for each predicted class. We394

combine the two classifiers to predict the testing set and give the recognition accuracy395

every 50 iterations, as shown in Fig 6.396

Among the five kinds of features, only CNN-SPM-RNN, enhanced CNN-RNN and397

HMP can make co-training succeed in learning from the unlabeled RGB-D data. The398

reason is that the two classifiers CRGB and Cdepth based on CNN-SPM-RNN, en-399

hanced CNN-RNN or HMP features can be reliable to learn from the unlabeled data in400

each iteration, i.e., most examples transferred from the unlabeled pool U to the labeled401

pool L are correctly labeled. However, CRGB and Cdepth based on kernel or enhanced402

CKM features could add many examples from the unlabeled pool U with incorrect la-403

bels, which can in turn degrade the performance of the two classifiers. The rationale404

behind this result is that the features extracted by shallow learning models (enhanced405

CKM: one layer, KDES: manually designed) are not as robust as the deeper learning406

models (HMP: two layers, enhanced CNN-RNN and CNN-SPM-RNN: multiple lay-407
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Figure 7: Recognition accuracy with iteration number I and the labeled size L (|nj | =
2, α = 0.65).

ers.) The biggest difference between the semi-supervised learning and the supervised408

learning, is that enhanced CKM performs much worse than HMP. It is probable that409

the features learned by the two-layer learning structure of HMP can obtain more ro-410

bustness and generalization ability than one-layer enhanced CKM features. As well,411

CNN-SPM-RNN performs the best in our semi-supervised learning.412

3.1.4. Parameter Analysis413

In this section, first, we analyse the effectiveness of the CNN-SPM-RNN feature414

learning model. Second, using the CNN-SPM-RNN model with default setting to ex-415

tract features, we analyse the effectiveness of the co-training model.416

CNN-SPM-RNN. CNN-SPM-RNN model is proposed to address the problem of417

cropping or warping in CNN-RNN model, and learn more powerful features from the418

raw data. Besides spatial pyramid pooling, the success of CNN-SPM-RNN is highly419

dependent on the feature coding layer as well as its codebook size.420

(1) CNN-SPM-RNN with and without feature coding layer. Fig. 8 (a) shows that421

a feature coding layer can significantly improve the performance of the learned fea-422
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Figure 8: (a) Performance of CNN-SPM-RNN with feature coding layer (k2 = 128 )
and without feature coding layer; (b) Performance of CNN-SPM-RNN with the code-
book size of the feature coding layer. For both (a) and (b), the classification accuracy
is based on the supervised setting.

tures. Through feature coding, we can learn high-level feature responses based on the423

low-level convolutional responses, which can further improve the effectiveness of the424

learned features. This is also one of the main differences between our work (for unsu-425

pervised deep learning model) and He et al’s work [29] (for supervised deep learning426

model), when applying spatial pyramid pooling to adopt the feature learning model for427

arbitrary image sizes.428

(2) Influence of the codebook size of the feature coding layer. Fig. 8 (b) demon-429

strates that the performance of the CNN-SPM-RNN feature can rapidly grow with larg-430

er codebook size at the beginning. When the codebook size k2 > 128, the recognition431

accuracy keeps stable with a very high value. The main reason is that more codewords432

can describe more patterns of features for object recognition, while some mild over-433

fitting can exist for very large codebook size. Considering the efficiency and accuracy,434

k2 = 128 is used for CNN-SPM-RNN.435

Co-training. Using CNN-SPM-RNN model to extract features for each modality436

of each object, the co-training method is closely related to the iteration number I , the437

labeled training size L, the number of added examples |nj |, and the coefficient α. We438

analyze each by fixing other parameters in the following.439

(1) Influence of the number of iterations. As shown in Fig. 7, all the accuracy440

curves of co-training from L = 1% to L = 20% suggest the similar trends as the441

number of iterations increases. After several hundreds of iterations (around 400), the442
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Figure 9: (a) Recognition accuracy with the added confident examples |nj | for each
class in each iteration (I = 500, L = 20%, α = 0.65); (b) Recognition accuracy with
the coefficient α to combine the RGB view and depth view classifier (I = 500, L =
20%, |nj | = 2).

recognition accuracy can rise and converge to a relatively high value, since most of the443

unlabeled examples have been transferred from the unlabeled pool to the labeled pool.444

This characteristic of co-training is very useful and practical as we can determine the445

final iteration number from a wide range and require for high precision at the same446

time.447

(2) Influence of the labeled size of the training set. Fig. 7 also shows the labeled448

size L can greatly determine the growth rate of each co-training curve and the final449

recognition accuracy. When L is given a smaller size, it implies a much bigger growth450

potential value along with the learning process of co-training, this is mainly because451

the two initialized much weaker classifiers CRGB and Cdepth can be improved a lot452

by using additional examples from the unlabeled pool. We see that a bigger size L can453

keep a much higher final recognition accuracy (L = 1%: 70.9%; L = 5%: 83.7%; L =454

10%: 89.0%; L = 20%: 90.7%;). It is very reasonable since the two classifiers CRGB455

and Cdepth are more reliable to add examples with correct labels from the beginning to456

the end, when given more labeled training examples.457

(3) Influence of the number of added confident examples in each iteration. To keep458

the balance of the size for each category in the training pool, we try to add the same459

number of confident examples for each category in each iteration (i.e., |nj |)). Fig. 9a460

reveals that the recognition results are very robust to |nj | when it rises from 1 to 500.461

Notice that the actually added examples are simultaneously constrained by the score462
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Figure 10: Confusion matrix of our semi-supervised learning method on the Wash-
ington RGB-D dataset(L = 20%, I = 500, CNN-SPM-RNN features). The y-axis
indicates the ground true labels, and the x-axis indicates the predicted labels. Some
misclassifications are: mushroom as garlic, pitcher as coffee mug

thresholds of θRGB and θdepth, since we do not trust those examples with too low463

scores. For the Washington RGB-D dataset, we fix θRGB = θdepth = 0.1.464

(4) Influence of the coefficient to combine the two view classifiers. As shown in465

Fig. 9b, when change the coefficient α from 0 (only using the depth classifier) to 1 (only466

using the RGB classifier), the result can gradually rise to the top (when α ∈ [0.5, 0.8])467

and then degrade. It is reasonable that object recognition can benefit a lot by regarding468

both RGB view and depth view effectively.469

We conclude that it is convenient to determine the parameter for our co-training470

algorithm, since a wide range of parameters (I ≥ 400, L ≥ 10%, 0.5 ≤ α ≤471

0.8, |nj | ≥ 1) can keep co-training successful. This characteristic is very impor-472

tant and useful in practical usage. For the Washington RGB-D dataset, we select473

I = 500, L = 20%, α = 0.65, |nj | = 2 for a balance of performance and efficiency.474
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Figure 11: Examples of confused categories on the Washington RGB-D dataset. Pitch-
er classified as coffee mug, mushroom as garlic, and peach as sponge due to similar
color or shape.

3.1.5. Error analysis475

The confusion matrix of our semi-supervised learning method over the 51 cate-476

gories is shown in Fig. 10. Most categories can be correctly classified, meaning that477

our method can achieve high precision of object recognition with only a small set of478

labeled data.479

We show some examples of the often misclassified categories in Fig. 11. Mush-480

rooms have almost the same appearance with garlic, pitchers look similar to coffee481

mugs from some angle, and peaches have similar shape with sponges.482

3.2. 2D3D Object Database483

We also verify the effectiveness of the semi-supervised learning method on the sec-484

ond public RGB-D object database, called 2D3D [5]. It consists of 156 object instances485

organized into 14 categories (see examples in Fig. 12). Each instance is recorded every486

10◦ around the vertical axis on a turntable, yielding 36 views per instance.487

We also focus on category recognition. For supervised learning, we follow the488

setting in [5]. We first sample 18 views for each instance and reduce the size of the489

total database to 2,808 RGB-D images. Then we randomly split the database into490

training and test sets, resulting in 82 instances with a total of 1476 views in the training491

set, while 74 objects with 1332 views in the test set. For the semi-supervised learning,492

we keep the main setting the same with the supervised. The only difference is that, we493

randomly divide the training set into two parts: 20% labeled and 80% unlabeled. Note494

that we also utilize additional instance labels in the process of co-training, in order to495

balance the examples of each instance in the training pool U . It is very important for496

co-training to bootstrap from such a small size of labeled examples.497

Table 4 shows the results for both the supervised setting and the semi-supervised498

setting. When all the training examples are labeled, CNN-SPM-RNN can achieve the499

best result with 92.5% accuracy. It is worth to note that KDES ranks the second and is500

superior to enhanced CKM, HMP and enhanced CNN-RNN. The main reason is prob-501
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Figure 12: Object examples from the 2D3D object database. Each object (RGB +
depth) shown here belongs to a different category.

Methods Labeled Size Depth RGB Combine
Browatzki et al. [5] 1476 74.6 66.6 82.8

KDES [1] 1476 88.7 89.1 92.8

enhanced CKM 1476 87.1 82.8 88.7

HMP [3] 1476 87.6 86.3 91.0

enhanced CNN-RNN 1476 88.7 88.2 92.5

enhanced CNN-RNN+CT 328 86.0 85.3 88.2

CNN-SPM-RNN 1476 89.4 88.5 92.9
CNN-SPM-RNN+CT 328 86.0 85.4 88.4

Table 4: Comparison of results on the 2D3D object database. CT means the proposed
semi-supervised learning method with co-training.

able that KDES takes advantage of many manually designed attributes such as object502

size, shape, edges, etc, which can help a lot to depict the objects than many learning503

based features on the relatively small scale 2D3D database. When only given 20% la-504

beled training set, the performance of the enhanced CNN-RNN and CNN-SPM-RNN505

with co-training are 88.2% and 88.4%, respectively. It is reasonable that the perfor-506

mance of our semi-supervised learning is lower than the supervised learning. Because507

co-training starts with such a few labeled examples for a multi-class recognition prob-508

lem, one or two added examples from the unlabeled pool U with incorrect labels can509

largely affect the performance of the two linear SVMs in the next round iteration.510

3.3. Fusing RGB-D Object Dataset511

The fusing RGB-D object database [41] consists of 8 classes of everyday objects512

(cup, bottle, doll, teddy bear, remote control, shoe, stapler, and pot, shown in Fig. 13),513

each with 10 objects per class. For each object, 12 images are captured by recording514

2 camera positions, 3 object poses and 2 illumination conditions. Thus there are 960515

image pairs in the database. We randomly split the database into training and test sets516

24



Figure 13: Object examples from the fusing RGB-D object database. Each object
(RGB + depth) shown here belongs to a different category.

Methods Labeled Size Depth RGB Combine
GIFT [41] 480 80.4 77.1 84.1

3D SPMK(L=2) [42] 480 72.0 – –
KDES [1] 480 81.0 82.8 88.3

enhanced CKM 480 83.0 77.7 87.4

HMP [3] 480 84.3 78.1 87.1

enhanced CNN-RNN 480 74.9 75.5 81.4

CNN-SPM-RNN 480 79.4 80.4 85.0

Table 5: Comparison of results on the fusing RGB-D dataset. Since this database has a
very small scale of images, we only show the supervised results.

with five different objects per class in each according to [41]. Since there are a very517

small scale of images, we only evaluate the performance of the supervised setting.518

The results in Table 5 show that the well-designed kernel features of KDES can519

achieve the state-of-the-art performance on the very small scale database. The main520

reason is that those unsupervised feature learning methods like enhanced CKM, HMP,521

CNN-RNN and CNN-SPM-RNN require a lot of training examples to achieve the dis-522

criminating abilities. And for depth modality, such effects by the small scale of training523

set are even more remarkable for enhanced CNN-RNN and CNN-SPM-RNN.524

4. Conclusion525

This paper proposes a semi-supervised learning framework based on co-training526

for RGB-D object recognition, which can exploit the two distinct views (RGB and527

depth) to boost the performance by learning from the unlabeled data. Through the528

analysis of the state-of-the-art features along with an unbiased evaluation, we find out529

that the proposed CNN-SPM-RNN features are very powerful to represent the RGB-D530

objects. The experiments demonstrate the effectiveness of our method, especially for531

large scale RGB-D datasets, since both the CNN-SPM-RNN features and the semi-532

supervised learning model can benefit from more available data. Furthermore, our533
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method is lowly sensitive to the selection of the parameter values such as the labeled534

training size, the iteration number, etc. We believe our method can be a useful tool535

for many vision applications, e.g, RGB-D dataset annotation and robot navigation, by536

solving the expensive and difficult task of manually labeling massive data.537

In addition, this paper also provides a meaningful guideline how to better repre-538

sent RGB-D objects. For large scale RGB-D object datasets, e.g., the Washington539

RGB-D datset, those unsupervised feature learning methods such as enhanced CK-540

M, HMP, enhanced CNN-RNN and CNN-SPM-RNN can achieve higher recognition541

performance. While for small scale RGB-D object datasets, e.g., the fusing RGB-D542

dataset, the well-designed kernel descriptors on top of various attributes such as object543

shape, size, edges, etc. are the best choice to depict objects.544

In future work, we will try to use on-line learning algorithms to improve the effi-545

ciency of the semi-supervised learning framework.546
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